Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon.

Identifieur interne : 001D38 ( Main/Exploration ); précédent : 001D37; suivant : 001D39

Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon.

Auteurs : Kranthi K. Mandadi [États-Unis] ; Karen-Beth G. Scholthof [États-Unis]

Source :

RBID : pubmed:25634987

Descripteurs français

English descriptors

Abstract

In eukaryotes, alternative splicing (AS) promotes transcriptome and proteome diversity. The extent of genome-wide AS changes occurring during a plant-microbe interaction is largely unknown. Here, using high-throughput, paired-end RNA sequencing, we generated an isoform-level spliceome map of Brachypodium distachyon infected with Panicum mosaic virus and its satellite virus. Overall, we detected ∼44,443 transcripts in B. distachyon, ∼30% more than those annotated in the reference genome. Expression of ∼28,900 transcripts was ≥2 fragments per kilobase of transcript per million mapped fragments, and ∼42% of multi-exonic genes were alternatively spliced. Comparative analysis of AS patterns in B. distachyon, rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), Arabidopsis thaliana, potato (Solanum tuberosum), Medicago truncatula, and poplar (Populus trichocarpa) revealed conserved ratios of the AS types between monocots and dicots. Virus infection quantitatively altered AS events in Brachypodium with little effect on the AS ratios. We discovered AS events for >100 immune-related genes encoding receptor-like kinases, NB-LRR resistance proteins, transcription factors, RNA silencing, and splicing-associated proteins. Cloning and molecular characterization of SCL33, a serine/arginine-rich splicing factor, identified multiple novel intron-retaining splice variants that are developmentally regulated and modulated during virus infection. B. distachyon SCL33 splicing patterns are also strikingly conserved compared with a distant Arabidopsis SCL33 ortholog. This analysis provides new insights into AS landscapes conserved among monocots and dicots and uncovered AS events in plant defense-related genes.

DOI: 10.1105/tpc.114.133991
PubMed: 25634987
PubMed Central: PMC4330581


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon.</title>
<author>
<name sortKey="Mandadi, Kranthi K" sort="Mandadi, Kranthi K" uniqKey="Mandadi K" first="Kranthi K" last="Mandadi">Kranthi K. Mandadi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Plant Pathology and Microbiology, Texas A&M University, College Station</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Scholthof, Karen Beth G" sort="Scholthof, Karen Beth G" uniqKey="Scholthof K" first="Karen-Beth G" last="Scholthof">Karen-Beth G. Scholthof</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843 kbgs@tamu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, Texas A&M University, College Station</wicri:regionArea>
<wicri:noRegion>College Station</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25634987</idno>
<idno type="pmid">25634987</idno>
<idno type="doi">10.1105/tpc.114.133991</idno>
<idno type="pmc">PMC4330581</idno>
<idno type="wicri:Area/Main/Corpus">001E27</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E27</idno>
<idno type="wicri:Area/Main/Curation">001E27</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E27</idno>
<idno type="wicri:Area/Main/Exploration">001E27</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon.</title>
<author>
<name sortKey="Mandadi, Kranthi K" sort="Mandadi, Kranthi K" uniqKey="Mandadi K" first="Kranthi K" last="Mandadi">Kranthi K. Mandadi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Plant Pathology and Microbiology, Texas A&M University, College Station</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Scholthof, Karen Beth G" sort="Scholthof, Karen Beth G" uniqKey="Scholthof K" first="Karen-Beth G" last="Scholthof">Karen-Beth G. Scholthof</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843 kbgs@tamu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, Texas A&M University, College Station</wicri:regionArea>
<wicri:noRegion>College Station</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="eISSN">1532-298X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternative Splicing (genetics)</term>
<term>Brachypodium (genetics)</term>
<term>Brachypodium (virology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Oryza (genetics)</term>
<term>Oryza (virology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Viruses (pathogenicity)</term>
<term>Sorghum (genetics)</term>
<term>Sorghum (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Brachypodium (génétique)</term>
<term>Brachypodium (virologie)</term>
<term>Génome végétal (génétique)</term>
<term>Oryza (génétique)</term>
<term>Oryza (virologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Sorghum (génétique)</term>
<term>Sorghum (virologie)</term>
<term>Virus des plantes (pathogénicité)</term>
<term>Épissage alternatif (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Alternative Splicing</term>
<term>Brachypodium</term>
<term>Genome, Plant</term>
<term>Oryza</term>
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Brachypodium</term>
<term>Génome végétal</term>
<term>Oryza</term>
<term>Protéines végétales</term>
<term>Sorghum</term>
<term>Épissage alternatif</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Plant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Brachypodium</term>
<term>Oryza</term>
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Brachypodium</term>
<term>Oryza</term>
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In eukaryotes, alternative splicing (AS) promotes transcriptome and proteome diversity. The extent of genome-wide AS changes occurring during a plant-microbe interaction is largely unknown. Here, using high-throughput, paired-end RNA sequencing, we generated an isoform-level spliceome map of Brachypodium distachyon infected with Panicum mosaic virus and its satellite virus. Overall, we detected ∼44,443 transcripts in B. distachyon, ∼30% more than those annotated in the reference genome. Expression of ∼28,900 transcripts was ≥2 fragments per kilobase of transcript per million mapped fragments, and ∼42% of multi-exonic genes were alternatively spliced. Comparative analysis of AS patterns in B. distachyon, rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), Arabidopsis thaliana, potato (Solanum tuberosum), Medicago truncatula, and poplar (Populus trichocarpa) revealed conserved ratios of the AS types between monocots and dicots. Virus infection quantitatively altered AS events in Brachypodium with little effect on the AS ratios. We discovered AS events for >100 immune-related genes encoding receptor-like kinases, NB-LRR resistance proteins, transcription factors, RNA silencing, and splicing-associated proteins. Cloning and molecular characterization of SCL33, a serine/arginine-rich splicing factor, identified multiple novel intron-retaining splice variants that are developmentally regulated and modulated during virus infection. B. distachyon SCL33 splicing patterns are also strikingly conserved compared with a distant Arabidopsis SCL33 ortholog. This analysis provides new insights into AS landscapes conserved among monocots and dicots and uncovered AS events in plant defense-related genes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25634987</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-298X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon.</ArticleTitle>
<Pagination>
<MedlinePgn>71-85</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1105/tpc.114.133991</ELocationID>
<Abstract>
<AbstractText>In eukaryotes, alternative splicing (AS) promotes transcriptome and proteome diversity. The extent of genome-wide AS changes occurring during a plant-microbe interaction is largely unknown. Here, using high-throughput, paired-end RNA sequencing, we generated an isoform-level spliceome map of Brachypodium distachyon infected with Panicum mosaic virus and its satellite virus. Overall, we detected ∼44,443 transcripts in B. distachyon, ∼30% more than those annotated in the reference genome. Expression of ∼28,900 transcripts was ≥2 fragments per kilobase of transcript per million mapped fragments, and ∼42% of multi-exonic genes were alternatively spliced. Comparative analysis of AS patterns in B. distachyon, rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), Arabidopsis thaliana, potato (Solanum tuberosum), Medicago truncatula, and poplar (Populus trichocarpa) revealed conserved ratios of the AS types between monocots and dicots. Virus infection quantitatively altered AS events in Brachypodium with little effect on the AS ratios. We discovered AS events for >100 immune-related genes encoding receptor-like kinases, NB-LRR resistance proteins, transcription factors, RNA silencing, and splicing-associated proteins. Cloning and molecular characterization of SCL33, a serine/arginine-rich splicing factor, identified multiple novel intron-retaining splice variants that are developmentally regulated and modulated during virus infection. B. distachyon SCL33 splicing patterns are also strikingly conserved compared with a distant Arabidopsis SCL33 ortholog. This analysis provides new insights into AS landscapes conserved among monocots and dicots and uncovered AS events in plant defense-related genes. </AbstractText>
<CopyrightInformation>© 2015 American Society of Plant Biologists. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mandadi</LastName>
<ForeName>Kranthi K</ForeName>
<Initials>KK</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2986-4016</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scholthof</LastName>
<ForeName>Karen-Beth G</ForeName>
<Initials>KB</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843 kbgs@tamu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Cell. 2015 Jan;27(1):7</RefSource>
<PMID Version="1">25634986</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="N">Alternative Splicing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058431" MajorTopicYN="N">Brachypodium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010942" MajorTopicYN="N">Plant Viruses</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045868" MajorTopicYN="N">Sorghum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25634987</ArticleId>
<ArticleId IdType="pii">tpc.114.133991</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.114.133991</ArticleId>
<ArticleId IdType="pmc">PMC4330581</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2014 Jul;19(7):414-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24917149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(6):1091-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17319848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22127870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 May;7(5):829-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24398628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):27-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2012 May;37(5):179-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22480731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Feb 1;241(1):141-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9454725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Nov;160(3):1432-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22961132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Dec;7(12):1009-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21057496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(8):R86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20738864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Jan;20(1):45-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):334-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10660679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr 28;165(2):826-840</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24777346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Oct;15(10):2333-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Mar;40(6):2454-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22127866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Jan;31(1):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23222703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Jun;22(6):1184-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22391557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2013 Nov;14(6):671-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22988256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):3640-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 May;25(5):1489-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23709626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 May;20(5):646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20305017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Sep;26(9):3472-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25248552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Dec;72(6):935-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22913769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2003 Feb;34(2):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12613259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):3657-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):189-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jan;29(1):24-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21221095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(6):e11313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20593023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 11;463(7282):763-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20148030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Nov;27(11):1277-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25296115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Nov;19(11):1207-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Nov 27;456(7221):470-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(10):e74183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W297-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Jul 25;2:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):3726-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24163313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):3-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21771916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 Apr;58(4):424-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15114421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):996-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24681622</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Mandadi, Kranthi K" sort="Mandadi, Kranthi K" uniqKey="Mandadi K" first="Kranthi K" last="Mandadi">Kranthi K. Mandadi</name>
</region>
<name sortKey="Scholthof, Karen Beth G" sort="Scholthof, Karen Beth G" uniqKey="Scholthof K" first="Karen-Beth G" last="Scholthof">Karen-Beth G. Scholthof</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D38 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D38 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25634987
   |texte=   Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25634987" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020